Напишем:


✔ Реферат от 200 руб., от 4 часов
✔ Контрольную от 200 руб., от 4 часов
✔ Курсовую от 500 руб., от 1 дня
✔ Решим задачу от 20 руб., от 4 часов
✔ Дипломную работу от 3000 руб., от 3-х дней
✔ Другие виды работ по договоренности.

Узнать стоимость!

Не интересно!

Методы корреляционно-регрессионного анализа связи показателей

Наиболее разработанная – метод парной корреляции, рассматривающая влияние вариации факторного признака (х) на результативный (у).

Для выявления связи применяются различные виды уравнения прямолинейной и криволинейной связей. Аналитическая связь между ними может быть описана следующими уравнениями:

Прямая

Гипербола

Парабола +а2х2

Определить тип уравнения можно, исследуя зависимость графически. Однако есть более общее указание.

- если результативный и факторный признаки увеличиваются одинаково, примерно в арифметической прогрессии, то связь прямая.

- при обратной – гиперболическая.

- если факторный признак увеличивается в арифметической прогрессии, а результативный быстрее, то парабола или степенная.

Оценка параметров уравнений регрессии а0; а1; а2 осуществляется методом наименьших квадратов.

При линейной зависимости, уравнение регрессии выглядит следующим образом

где а0 – усредненное влияние на результативный признак случайных факторов. а1 – коэффициент регрессии показывает насколько изменяется в среднем значение результативного признака при увеличении факторного на единицу собственного измерения.

На практике часто исследования проводятся по большому числу наблюдений. В этом случае исходные данные представляют в сводной корреляционной таблице. При этом анализу подвергаются сгруппированные данные и по факторному, и по результативному признаку.

Корреляционная таблица дает общее представление о направлении связи. Если оба признака (х и у) располагаются в возрастающем порядке, а частоты (fxy) сосредоточены по диагонали сверху вниз направо, то связь прямая, в противном случае обратная.

            прямая                                                            обратная

О тесноте связи между признаками х и у по корреляционной таблице можно судить по кучности расположения частот вокруг диагонали (поскольку заполненные клетки таблицы в стороне от нее).

Если клетки заполнены большими цифрами, то связь слабая. Чем ближе частоты (fxy) располагаются к одной из диагоналей, тем теснее связь. Если в расположении частот (fxy) нет системности, то можно судить об отсутствии связи.