Однофакторный корреляционно-регрессионный анализ

Поможем написать любую работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость

Наиболее распространенной в теории статистики является методология так называемой  парной корреляции, рассматривающая влияние вариации факторного признака х на результативный у и представляющая собой однофакторный  корреляционный и регрессионный анализ.  Важнейшим этапом построения модели является установление в анализе исходной информации математической функции.. В основу выявления и установления аналитической формы связи положено применение в анализе исходной информации математических функций. Так при анализе прямолинейной зависимости применяется уравнение однофакторной (парной) линейной корреляционной связи . Коэффициент парной линейной регрессии а1 имеет смысл показателя силы связи между вариацией факторного признака х и вариацией результативного признака у. Уравнение связи показывает среднее значение изменения результативного признака у при изменении факторного признака х на одну единицу его измерения, т.е. вариацию у, приходящуюся на единицу вариации х. Знак а1 указывает направление этого изменения. Параметры уравнения а0, а1 находят методом наименьших квадратов. В основу метода положено требование минимальности сумм квадратов отклонений эмпирических данных yi от выравненных : ∑(yi-y)2=∑(yi-a0-a1xi)2--- min. Для нахождения минимума данной функции приравниваем к нулю её частные производные и получим систему двух линейных уравнений, которая называется системой нормальных уравнений: . Параметры уравнения парной линейной регрессии можно вычислить по следующим формулам: . Определив значения а0, а1 и подставив их в уравнение связи, получаем значения , зависящие только от заданного значения х.

При изучении корреляционной связи показателей анализу подвергаются сравнительно небольшие по составу единиц совокупности. При численности объектов анализа до 30 единиц возникает необходимость испытания параметров уравнения регрессии на их типичность. При этом осуществляется проверка, насколько вычисленные параметры характерны для отображаемого комплекса условий. Применительно к совокупностям, у которых п < 30, для проверки типичности параметров уравнения регрессии используется t-критерий Стьюдента. При этом вычисляют расчетные (фактические) значения t-критерия: для параметра а0  ; для параметра а1 , где п – объем выборки, - среднее квадратическое отклонение результативного признака у от выровненных значений ; - среднее квадратическое отклонение факторного признака х от общей средней . Вычисленные значения сравниваются с критическими t, которые определяются по таблице. Параметр признается значимым (существенным) при условии, если tрасч > tтабл. В зависимости от того какой получится результат наша гипотеза принимается или отвергается.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.