Способы установления наличия корреляционных связей.

Поможем написать любую работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость

Для выявления наличия связи, ее характера и направления используются методы приведения параллельных данных, аналитических группировок, графический, корреляции и регрессии.

Метод проведения параллельных данных основан на сопоставлении двух или нескольких рядов статистических величин. Данное сопоставление позоляет установить наличие связи и получить представление о ее характере.

Графический метод

Графическая взаимосвязь двух признаков изображается с помощью поля корреляции.

Корреляция – это статистическая зависимость между случайными величинами, не имеющими строго функционального характера, при которой изменение одной из случайных величин приводит к изменению математического ожидания другой.

Виды зависимостей:

1)парная корреляция – связь между двумя признаками (между двумя факторными либо между факторным и результативным признаком)

2)частная корреляция – зависимость между результативным и одним факторным признаком при фиксированном значении других факторных признаков

3)множественная корреляция – зависимость результативного и двух и более факторных признаков.

Корреляционный анализ имеет своей задачей количественное определение тесноты связи между двумя признаками.

Теснота связи количественно выражается величиной коэффициентов корреляции.

Теснота связи при линейной зависимости измеряется с помощью линейного коэффициента корреляции:

Линейный коэффициент корреляции изменяется в пределах от -1 до+1.

По степени тесноты связи различают количественные критерии оценки тесноты связи:

Величина коэффициента корреляции

Характер связи

До ±0,3

Практически отсутствует

±0,3 – ±0,5

Слабая

±0,5 – ±0,7

Умеренная

±0,7 – ±1,0

Сильная

Теснота связи при криволинейной зависимости измеряется с помощью корреляционного отношения. Различают эмпирическое и теоретическое корреляционное отношение.

Эмпирическое корреляционное отношение:

Регрессионный анализ заключается в определении аналитического выражения связи, в котором изменение одной величины обусловлено влиянием одной или нескольких независимых величин (факторов).

По форме зависимости различают:

- линейную регрессию, которая выражается уравнением прямой (линейной функции) вида:

- нелинейную регрессию, которая выражается уравнениями вида:

парабола -

гипербола - и т.д.

По направлению связи различают:

А) прямую регрессию (положительную), возникающую при условии, если с увеличением или уменьшением независимой величины значения зависимой также соответственно увеличиваются или уменьшаются;

Б) обратную (отрицательную) регрессию, появляющуюся при условии, что с увеличением или уменьшением независимой величины зависимая соответственно уменьшается или увеличивается.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.