Понятие о вариации признака в статистической совокупности.

Доказано - для экономистов работа с числами очень важный навык. Игоровой тренажер "Продолжи ряд" создан специально для работы с числами в уме. В начале обучения только 2 из 10 проходят тест без ошибок.

Пройти тест

Вариация – различие в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени. К показателям вариации относятся: размах вариации, среднее линейное отклонение, дисперсия и среднее квадратическое отклонение, коэффициент вариации. Самым элементарным показателем вариации признака является размах вариации R, .Размах вариации показывает лишь крайние отклонения признака. Для анализа вариации необходим показатель, который отражает все колебания варьирующего признака и дает обобщенную характеристику. Это среднее линейное отклонение (среднюю арифметическую абсолютных значений отклонений отдельных вариантов от их средней арифметической). Среднее линейное отклонение для несгруппированных данных: , где п – число членов ряда; для сгруппированных данных: , где - сумма частот вариационного ряда.  Дисперсия признака - средний квадрат отклонений вариантов от их средней величины, она вычисляется по формулам простой и взвешенной дисперсий. Простая дисперсия для несгруппированных данных: ; взвешенная дисперсия для вариационного ряда: . Cвойства дисперсии: 1) если все значения признака уменьшить или увеличить на одну и ту же постоянную величину А, дисперсия не изменится; 2) если все значения признака уменьшить или увеличить в одно и то же число раз (i раз), то дисперсия уменьшится или увеличится в  раз. Используя второе свойство дисперсии, можно получить формулу вычисления дисперсии в вариационных рядах с равными интервалами по способу моментов: , где  i – величина интервала; -новые (преобразованные) значения вариантов (А – условный ноль, в качестве которого удобно использовать середину интервала, обладающего наибольшей частотой);  - момент второго порядка; - квадрат момента первого порядка. Среднее квадратическое отклонение равно корню квадратному из дисперсии: для несгруппированных данных: , для вариационного ряда: . Среднее квадратическое отклонение показывает, на сколько в среднем отклоняются конкретные варианты от их среднего значения. Исчисляем среднее значение альтернативного признака и его дисперсию. Среднее значение альтернативного признака . Дисперсия альтернативного признака: . Подставив в формулу дисперсии q = 1 – p, получим . Таким образом,  - дисперсия альтернативного признака равна произведению доли единиц, обладающих признаком, на долю единиц, не обладающих данным признаком. Среднее квадратическое отклонение альтернативного признака . Для сравнения вариаций различных признаков, используют относительный показатель вариации – коэффициент вариации. Коэффициент вариации отношение среднего квадратического отклонения к средней арифметической: . Также коэффициент вариации используется как характеристика однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33%.