Корреляционно-регрессионный метод анализа.

Доказано - для экономистов работа с числами очень важный навык. Игоровой тренажер "Продолжи ряд" создан специально для работы с числами в уме. В начале обучения только 2 из 10 проходят тест без ошибок.

Пройти тест

В общем виде статистика изучая взаимосвязи оценивает количественно их наличие и направление, а также характеризует силы и формы влияния одних факторов на другие. При решении применяют две группы методов: корреляционный и регрессионный анализы. Некоторые объединяют эти методы в корреляционно – регрессионный метод, когда взаимосвязь характеризуется всесторонне. Методы корреляции и регрессии широко представлены в статистических пакетах программ для ЭВМ. Существует множество алгоритмов вычисления, вручную нецелесообразно проводить такой анализ. Методы оценки тесноты связи – корреляционные (параметрические) и непараметрические. Параметрические методы используют оценки нормального распределения и применяется, когда изучаемая совокупность состоит из величин, которые подчиняются закону нормального распределения. Непараметрические методы не накладывают ограничений на закон распределения изучаемых величин, они просты в вычислениях. Когда в ЭВМ вводят значение зависимой переменой У и матрицу независимых переменных Х, принимается форма уравнения, например линейная. Ставится задача включить в уравнение k наиболее значимых Х, в результате получается уравнение регрессии с k наиболее значимыми факторами. Это прием называется пошаговой регрессией.

Методика построения однофакторных регрессионных моделей. Анализ качества моделей.

Модель (в широком смысле) – аналог, условный образ какого – либо процесса или события, приближено воссоздающий оригинал. По количеству включаемых факторов модели делятся на однофакторные и многофакторные. Наиболее разработанной в теории статистики является методология парной корреляции – однофакторный корреляционный и регрессионный анализ. Построение и анализ двух мерной модели является основой для изучения многофакторных связей. Важнейшим этапом построения модели (уравнения регрессии) является установление исходной информации. Уравнение однофакторной (парной) линейной корреляционной связи имеет вид. y¯ =a0+a1x . a –  показывает силу связи между вариацией факторного признака и результативного. Параметры уравнения а0, а1 находят методом наименьших квадратов. Для практического использования моделей регрессии большое значение имеет их адекватность, т. е. соответствие фактическим статистическим данным. При численности объектов анализа до 30 единиц возникает необходимость проверки значимости каждого коэффициента регрессии с помощью t – критерия Стьюдента. Проверка адекватности регрессионной модели может быть дополнена корреляционным анализом (сначала определить тесноту корреляционной связи). После проверки адекватности установление точности и надежности уравнения регрессии его нужно проанализировать. Для удобства используют коэффициент эластичности. Он показывает среднее изменение результативного признака при изменении факторного признака на 1%. Э = а1х¯/у¯.