Корреляционно-регрессионный анализ взаимосвязей социально-экономических явлений, его сущность и этапы.

Поможем написать любую работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость

Корреляционный метод анализа решает две задачи: 1. Установление факта наличия связи. 2. Измерение тесноты корреляционной связи по эмпирическим данным.

1. Задача: Есть ряд методов выявления связи: 1. Приведение параллельных рядов данных. 2. Графический. 3. Метод корреляционной таблицы – это специальная комбинационная таблица в которой проведена группировка по двум признакам по факторному и результативному. Концентрация частот около диагонали матрицы свидетельствует о прямой связи, а концентрация частот около побочной диагонали о наличии обратной связи между признаками. 4. Метод аналитической группировки.

В статистике различают: парную корреляцию (взаимосвязь между двумя признаками);  частная корреляция (когда рассматривается зависимость между результативными признаками и одним из факторных при фиксированном значении всех остальных факторных признаков); множественная корреляция (зависимость между результативным и 2  или более факторных признаков).

2 Задача: Для измерения тесноты связи используется специальный коэффициент, который количественно выражает тесноту связи. Теснота корреляционной связи может быть измерена эмпирическим корреляционным отношением , когда межгрупповая дисперсия характеризует отклонение групповых средних результативного признака от общей средней: .   

Задачи регрессионного анализа – выбор типа модели, установление степени влияния независимых переменных на зависимую и определение расчётных значений зависимости переменной.  

Для линейной связи вычисляется линейный коэф. корреляции (показывает направление связи)   ,где r-линейный коэф.корреляции; х-значение факторного признака; -среднее значение факторного признака; у-знач.результативного призн.; -среднее знач.рез.признака ; n-число элементов ряда; -средние квадратич.отклонения факторного признака. Коэф.коррел. может изменятся от -1 до +1. Если значение отрицательно, то связь обратная (с возрастанием факторного признака результат.уменьшается) При любой форме связи можно воспользоваться коэф. Фехнера. Он основан на сравнении знаков отклонений отдельных значений признаков от средней.  где С-число совпадений знаков, Н-число несовпадений. Этот коэф. изменяется от +1 до -1, если он равен +1 то имеется согласованная прямая изменчивость; при 0 согласованная изменчивость отсутствует; при -1 имеется обратная согл.изменчивость. Также при любой форме связи можно исчислить теоретическое корреляционное отношение. Данный показатель следует рассчитывать после того, как установлена форма связи и рассчитано уравнение регрессии: у= ах+в , где -теоретич.коррел.отношение; -дисперсия теоретических уровней. Теоретич.коррел.отношение изменяется от 0 до 1, чем ближе к 1 тем теснее связь.  Количественную зависимость изменения значения ух от изменения х исчисляется коэф.эластичности. Он характеризует на сколько процентов увеличится ух при увеличении х на один процент:  Также для всех форм связи можно рассчитать индекс корреляции (измеряет тесноту связи) Индекс коррел. изменяется от 0до 1, Когда он равен 0, то связи между вариацией признаков у и х нет (когда линия ух .совпадает на чертеже с линией ). Когда индекс кор. равен 1, то связь функциональная,полная. (линия ух сольется на чертеже с линией у. Это означает что изменение у целиком опред. изменением х).

 

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.