Напишем:


✔ Реферат от 200 руб., от 4 часов
✔ Контрольную от 200 руб., от 4 часов
✔ Курсовую от 500 руб., от 1 дня
✔ Решим задачу от 20 руб., от 4 часов
✔ Дипломную работу от 3000 руб., от 3-х дней
✔ Другие виды работ по договоренности.

Узнать стоимость!

Не интересно!

Показатели вариации. Их значение. Характеристика абсолютных показателей: размах вариации и среднее линейное отклонение.

Однородность  статистических совокупностей характеризуется величиной вариации (рассеяния) признака, т.е. несовпадением его значений у разных статистических единиц. Для измерения вариации в статистике используются абсолютные и относительные показатели.

К абсолютным показателям вариации относятся:

Показатели вариации. Их значение. Характеристика абсолютных показателей: размах вариации и среднее линейное отклонение.

Размах вариации R является наиболее простым показателем вариации: Показатели вариации. Их значение. Характеристика абсолютных показателей: размах вариации и среднее линейное отклонение.

Этот показатель представляет собой разность между максимальным и минимальным значениями признаков и характеризует разброс элементов совокупности. Размах улавливает только крайние значения признака в совокупности, не учитывает повторяемость его промежуточных значений, а также не отражает отклонений всех вариантов значений признака.

Размах часто используется в практической деятельности, например, различие между max и min пенсией, заработной платой в различных отраслях и т.д.

Среднее линейное отклонение d является более строгой характеристикой вариации признака, учитывающей различия всех единиц изучаемой совокупности. Среднее линейное отклонение представляет собой среднюю арифметическую абсолютных значений отклонений отдельных вариантов от их средней арифметической. Этот показатель рассчитывается по формулам простой и взвешенной средней арифметической:

Показатели вариации. Их значение. Характеристика абсолютных показателей: размах вариации и среднее линейное отклонение.

В практических расчетах среднее линейное отклонение используется для оценки ритмичности производства, равномерности поставок. Так как модули обладают плохими математическими свойствами, то на практике часто применяют другие показатели среднего отклонения от средней – дисперсию и среднее квадратическое отклонение.