Линейный коэффициент корреляции.

Онлайн школа английского языка нового поколения. Более 7 лет предоставляет обучение английскому языку по Skype (Скайп) и является лидером данного направления! Основные преимущества:

  • Вводный урок бесплатно;
  • Большое число опытных преподавателей (нейтивов и русскоязычных);
  • Курсы НЕ на определенный срок (месяц, полгода, год), а на конкретное количество занятий (5, 10, 20, 50);
  • Более 10 000 довольных клиентов.
  • Стоимость одного занятия с русскоязычным преподавателем - от 600 рублей, с носителем языка - от 1500 рублей

Узнать детали

Корреляция – это статистическая зависимость между случайными величинами, не имеющими строго функционального характера, при которой изменение одной из случайных величин приводит к изменению математического ожидания другой.

Виды зависимостей:

1) парная корреляция – связь между двумя признаками (между двумя факторными либо между факторным и результативным признаком)

2)       частная корреляция – зависимость между результативным и одним факторным признаком при фиксированном значении других факторных признаков

3)       множественная корреляция – зависимость результативного и двух и более факторных признаков.

Корреляционный анализ имеет своей задачей количественное определение тесноты связи между двумя признаками.

Теснота связи количественно выражается величиной коэффициентов корреляции.

Теснота связи при линейной зависимости измеряется с помощью линейного коэффициента корреляции:

Линейный коэффициент корреляции.

Линейный коэффициент корреляции изменяется в пределах от -1 до+1.

По степени тесноты связи различают количественные критерии оценки тесноты связи:

Величина коэффициента корреляции

Характер связи

До ±0,3

Практически отсутствует

±0,3 – ±0,5

Слабая

±0,5 – ±0,7

Умеренная

±0,7 – ±1,0

Сильная