Напишем:


✔ Реферат от 200 руб., от 4 часов
✔ Контрольную от 200 руб., от 4 часов
✔ Курсовую от 500 руб., от 1 дня
✔ Решим задачу от 20 руб., от 4 часов
✔ Дипломную работу от 3000 руб., от 3-х дней
✔ Другие виды работ по договоренности.

Узнать стоимость!

Не интересно!

Правило сложения дисперсии.

Показатели вариации могут быть использованы не только в анализе изменчивости изучаемого признака, но и для оценки степени воздействия одного признака на вариацию другого признака, т.е. в анализе взаимосвязей между показателями.

При проведении такого анализа совокупность должна представлять собой множество единиц, каждая из которых характеризуется двумя признаками – факторным и результативным.

Для выявления взаимосвязи исходная совокупность делится на две или более групп по факторному признаку. Выводы о степени взаимосвязи базируются на анализе вариации результативного признака. При этом применяется правило сложения дисперсий:

Правило сложения дисперсии.

Правило сложения дисперсии.- общая дисперсия;

Правило сложения дисперсии.- средняя из внутригрупповых дисперсий;

Правило сложения дисперсии.- межгрупповая дисперсия.

Общая дисперсия измеряет вариацию признака по всей совокупности под влиянием всех факторов, обусловивших эту вариацию.

Правило сложения дисперсии.

Межгрупповая дисперсия отражает ту часть вариации результативного признака, которая обусловлена воздействием факторного признака. Это воздействие проявляется в отклонении групповых средних от общей средней:

Правило сложения дисперсии.

где          Правило сложения дисперсии.- среднее значение результативного признака по i-ой группе;

Правило сложения дисперсии.- общая средняя по совокупности в целом;

Правило сложения дисперсии.- объем (численность) i-ой группы.

Если факторный признак, по которому производится группировка, не оказывает никакого влияния на результативный признак, то групповые средние будут равны между собой и совпадут с общей средней. В этом случае межгрупповая средняя будет равна нулю.

Внутригрупповая дисперсия отражает случайную вариацию, т.е. часть вариации, происходящую под влиянием неучтенных факторов и независящую от признака фактора, положенного в основание группировки.

Правило сложения дисперсии.

Средняя из внутригрупповых дисперсий отражает ту часть вариации результативного признака, которая обусловлена действием всех прочих неучтенных факторов, кроме фактора, по которому осуществлялась группировка:

Правило сложения дисперсии.

где          Правило сложения дисперсии.- дисперсия результативного признака в i-ой группе;

Правило сложения дисперсии.- объем (численность) i-ой группы;

Эмпирический коэффициент детерминации представляет собой долю межгрупповой дисперсии в общей дисперсии.

Правило сложения дисперсии.

Теснота связи между факторным и результативным признаком оценивается на основе эмпирического корреляционного отношения:

Правило сложения дисперсии.

Данный показатель может принимать значения от 0 до 1. Чем ближе к 1 будет его величина, тем сильнее взаимосвязь между рассматриваемыми признаками.