Предельная ошибка выборки
Поможем написать любую работу на аналогичную тему
Учитывая, что на основе выборочного обследования нельзя точно оценить изучаемый параметр (например, среднее значение) генеральной совокупности, необходимо найти пределы, в которых он находится. В конкретной выборке разность может быть больше, меньше или равна
. Каждое из отклонений
от
имеет определенную вероятность. При выборочном обследовании реальное значение
в генеральной совокупности неизвестно. Зная среднюю ошибку выборки, с определенной вероятностью можно оценить отклонение выборочной средней от генеральной и установить пределы, в которых находится изучаемый параметр (в данном случае среднее значение) в генеральной совокупности. Отклонение выборочной характеристики от генеральной называется предельной ошибкой выборки
. Она определяется в долях средней ошибки с заданной вероятностью, т.е.
= t
, (1.38)
где t – коэффициент доверия, зависящий от вероятности, с которой определяется предельная ошибка выборки.
Вероятность появления определенной ошибки выборки находят с помощью теорем теории вероятностей. Согласно теореме П. Л. Чебышёва, при достаточно большом объеме выборки и ограниченной дисперсии генеральной совокупности вероятность того, что разность между выборочной средней и генеральной средней будет сколь угодно мала, близка к единице:
при
.
А. М. Ляпунов доказал, что независимо от характера распределения генеральной совокупности при увеличении объема выборки распределение вероятностей появления того или иного значения выборочной средней приближается к нормальному распределению. Это так называемая центральная предельная теорема. Следовательно, вероятность отклонения выборочной средней от генеральной средней, т.е. вероятность появления заданной предельной ошибки, также подчиняется указанному закону и может быть найдена как функция от t с помощью интеграла вероятностей Лапласа:
,
где – нормированное отклонение выборочной средней от генеральной средней.
Значения интеграла Лапласа для разных t рассчитаны и имеются в специальных таблицах, из которых в статистике широко применяется сочетание:
Вероятность |
0,683 |
0,866 |
0,950 |
0,954 |
0,988 |
0,990 |
0,997 |
0,999 |
t |
1 |
1,5 |
1,96 |
2 |
2,5 |
2,58 |
3 |
3,5 |
Задавшись конкретным уровнем вероятности, выбирают величину нормированного отклонения t и определяют предельную ошибку выборки по формуле (1.38)
При этом чаще всего применяют = 0,95 и t = 1,96, т.е. считают, что с вероятностью 95% предельная ошибка выборки вдвое больше средней. Поэтому в статистике величина t иногда именуется коэффициентом кратности предельной ошибки относительно средней.
После исчисления предельной ошибки находят доверительный интервал обобщающей характеристики генеральной совокупности. Такой интервал для генеральной средней величины имеет вид
(-
)
(
+
), (1.39)
а для генеральной доли аналогично
(w-)
p
(w +
). (1.40)