Напишем:


✔ Реферат от 200 руб., от 4 часов
✔ Контрольную от 200 руб., от 4 часов
✔ Курсовую от 500 руб., от 1 дня
✔ Решим задачу от 20 руб., от 4 часов
✔ Дипломную работу от 3000 руб., от 3-х дней
✔ Другие виды работ по договоренности.

Узнать стоимость!

Не интересно!

Предельная ошибка выборки

Учитывая, что на основе выборочного обследования нельзя точно оценить изучаемый параметр (например, среднее значение) генеральной совокупности, необходимо найти пределы, в которых он находится. В конкретной выборке разностьПредельная ошибка выборки может быть больше, меньше или равна Предельная ошибка выборки. Каждое из отклонений Предельная ошибка выборкиот Предельная ошибка выборки имеет определенную вероятность. При выборочном обследовании реальное значение Предельная ошибка выборки в генеральной совокупности неизвестно. Зная среднюю ошибку выборки, с определенной вероятностью можно оценить отклонение выборочной средней от генеральной и установить пределы, в которых находится изучаемый параметр (в данном случае среднее значение) в генеральной совокупности. Отклонение выборочной характеристики от генеральной называется предельной ошибкой выборки Предельная ошибка выборки. Она определяется в долях средней ошибки с заданной вероятностью, т.е.

Предельная ошибка выборки = tПредельная ошибка выборки,         (1.38)

где tкоэффициент доверия, зависящий от вероятности, с которой определяется предельная ошибка выборки.

            Вероятность появления определенной ошибки выборки находят с помощью теорем теории вероятностей. Согласно теореме П. Л. Чебышёва, при достаточно большом объеме выборки и ограниченной дисперсии генеральной совокупности вероятность того, что разность между выборочной средней и генеральной средней будет сколь угодно мала, близка к единице:

Предельная ошибка выборки при Предельная ошибка выборки.

А. М. Ляпунов доказал, что независимо от характера распределения генеральной совокупности при увеличении объема выборки распределение вероятностей появления того или иного значения выборочной средней приближается к нормальному распределению. Это так называемая центральная предельная теорема. Следовательно, вероятность отклонения выборочной средней от генеральной средней, т.е. вероятность появления заданной предельной ошибки, также подчиняется указанному закону и может быть найдена как функция от t с помощью интеграла вероятностей Лапласа:

Предельная ошибка выборки,

где Предельная ошибка выборки– нормированное отклонение выборочной средней от генеральной средней.

Значения интеграла Лапласа для разных t рассчитаны и име­ются в специальных таблицах, из которых в статистике широко применяется сочетание:

Вероятность

0,683

0,866

0,950

0,954

0,988

0,990

0,997

0,999

t

1

1,5

1,96

2

2,5

2,58

3

3,5

Задавшись конкретным уровнем вероятности, выбирают величину нормированного отклонения t и определяют предельную ошибку выбор­ки по формуле (1.38)

При этом чаще всего применяют Предельная ошибка выборки = 0,95 и t = 1,96, т.е. считают, что с вероятностью 95% предельная ошибка выборки вдвое больше средней. Поэтому в статистике величина t иногда именуется коэффициентом кратности предельной ошибки относительно средней.

После исчисления предельной ошибки находят доверительный ин­тервал обобщающей характеристики генеральной совокупности. Такой интервал для генеральной средней величины имеет вид

(Предельная ошибка выборки-Предельная ошибка выборки)Предельная ошибка выборки Предельная ошибка выборкиПредельная ошибка выборки(Предельная ошибка выборки+Предельная ошибка выборки),                                            (1.39)

а для генеральной доли аналогично

(w-Предельная ошибка выборки)Предельная ошибка выборки p Предельная ошибка выборки(w +Предельная ошибка выборки).                                                (1.40)

Следовательно, при выборочном наблюдении определяется не одно, точное значение обобщающей характеристики генеральной совокупно­сти, а лишь ее доверительный интервал с заданным уровнем вероятно­сти. И это серьезный недостаток выборочного метода статистики.