Напишем:


✔ Реферат от 200 руб., от 4 часов
✔ Контрольную от 200 руб., от 4 часов
✔ Курсовую от 500 руб., от 1 дня
✔ Решим задачу от 20 руб., от 4 часов
✔ Дипломную работу от 3000 руб., от 3-х дней
✔ Другие виды работ по договоренности.

Узнать стоимость!

Не интересно!

Определение численности выборки

Разрабатывая программу выборочного наблюдения, иногда задаются конкретным значением предельной ошибки с уровнем вероятности. Не­известной остается минимальная численность выборки, обеспечиваю­щая заданную точность. Ее можно получить из формул средней и пре­дельной ошибок в зависимости от типа выборки. Так, подставляя фор­мулы сначала (1.35) и затем (1.36) в формулу (1.38) и решая ее относи­тельно численности выборки, получим следующие формулы

для повторной выборки n = Определение численности выборки;                       (1.41)

для бесповторной выборки n = Определение численности выборки.   (1.42)

Кроме того, при статистических величинах с количественными при­знаками надо знать и выборочную дисперсию, но к началу расчетов и она не известна. Поэтому она принимается приближенно одним из сле­дующих способов:

— берется из предыдущих выборочных наблюдений;

— по правилу, согласно которому в размахе вариации укладывается примерно шесть стандартных отклонений (R/Определение численности выборки = 6 или R/ Определение численности выборки = 6; отсюда Д = R2 /36);

—        по правилу «трех сигм», согласно которому в средней величине укладывается   примерно   три стандартных   отклонения (Определение численности выборки/Определение численности выборки =3; отсюда Определение численности выборки= Определение численности выборки/3 или Д =Определение численности выборки2/9).

При изучении не численных признаков, если даже нет приблизи­тельных сведений о выборочной доле, принимается w = 0,5, что по фор­муле (1.37) соответствует выборочной дисперсии в размере Дв = 0,5(1-0,5) = 0,25.