Абсолютное и относительное изменение уровней ряда
Поможем написать любую работу на аналогичную тему
Система уровней ряда аналогична системе дискретных статистических величин X. По-прежнему вычисляются абсолютное, относительное изменения, среднее значение, а также соответствующие индексы и темпы изменения по единичным и средним значениям. Используются те же формулы средних величин от простой арифметической до геометрической.
Любое изменение уровней ряда определяется базисным и цепным способами.
Базисное абсолютное изменение представляет собой разность конкретного и первого уровней ряда, определяясь по формуле
(1.43)
Цепное абсолютное изменение представляет собой разность конкретного и предыдущего уровней ряда, определяясь по формуле
(1.44)
По знаку абсолютного изменения делается вывод о характере развития явления: при > 0 — рост, при
< 0 — спад, при
= 0 — стабильность.
Для проверки правильности расчетов применяется правило, согласно которому сумма цепных абсолютных изменений равняется последнему базисному. То есть
(1.45)
где к = n-1 — количество изменений уровней ряда (r = 1 ...к).
Базисное относительное изменение представляет собой соотношение конкретного и первого уровней ряда, определяясь по формуле
(1.46)
Цепное относительное изменение представляет собой соотношение конкретного и предыдущего уровней ряда, определяясь по формуле
(1.47)
Относительные изменения уровней — это по существу индексы динамики, критериальным значением которых служит 1. Если они больше ее, имеет место рост явления, меньше ее — спад, а при равенстве единице наблюдается стабильность явления.
Вычитая единицу из относительных изменений, получают темп изменения уровней, критериальным значением которого служит 0. При положительном темпе изменения имеет место рост явления, при отрицательном — спад, а при нулевом темпе изменения наблюдается стабильность явления.
Для проверки правильности расчетов применяется правило, согласно которому произведение цепных относительных изменений равняется последнему базисному.
То есть
(1.48)