Напишем:


✔ Реферат от 200 руб., от 4 часов
✔ Контрольную от 200 руб., от 4 часов
✔ Курсовую от 500 руб., от 1 дня
✔ Решим задачу от 20 руб., от 4 часов
✔ Дипломную работу от 3000 руб., от 3-х дней
✔ Другие виды работ по договоренности.

Узнать стоимость!

Не интересно!

Особые виды степенных средних величин

Разновидностью простой средней арифметической служит средняя хронологическая величина, когда имеются моментные статистические величины на определенную одинаковую дату, например, на 1-е число каждого месяца в году. Формула средней хронологической теоретиче­скому выводу не поддается и записывается приближенно в виде

Особые виды степенных средних величин.                     (1.17)

где Х1 и Xn — первое и последнее значения статистической величи­ны; Xi — промежуточные значения; n — общее число значений.

По такой формуле бухгалтерия определяет среднегодовую стоимость основных фондов, учитывая ее значения на 1-е число каждого месяца. При этом n = 13, т. к. 1-е января фиксируется дважды: у отчетного и следующего за отчетным года. Аналогично коммерческие банки опре­деляют среднегодовую сумму вкладов и выданных кредитов. Если учет квартальный, то n = 5.

Средняя геометрическая величина получается при подстановке в формулу (1.11) m=0:

Особые виды степенных средних величин=Особые виды степенных средних величин=Особые виды степенных средних величин

Для раскрытия неопределенностей этого вида прологарифмируем обе части формулы (1.11):

Особые виды степенных средних величин.

Подставляя в правую часть равенства m=0, получаем неопределенность вида Особые виды степенных средних величин. Используя правило Лопиталя и дифференцируя отдельно числитель и знаменатель по переменной m, получаем

Особые виды степенных средних величин.

Следовательно, при m=0

Особые виды степенных средних величин.

Потенцируя, находим

Особые виды степенных средних величин.                                (1.18)

Формула (1.18) является формулой средней геометрической простой, а если использовать частоты f, получим формулу средней геометрической взвешенной:

* = Особые виды степенных средних величинвзвешенная,         (1.19)

где П—символ произведения.

Средняя геометрическая величина применяется, если задана после­довательность индексов динамики, указывающих, например, на измене­ние уровня производства каждого последующего года по сравнению с предыдущим.

Рассчитанные для одних и тех же данных различные средние вели­чины оказываются неодинаковыми. Здесь действует правило мажорантности средних величин (впервые сформулировал профессор А. Я. Боярский), согласно которому с ростом показателя степени m в общих формулах увеличивается и средняя величина. То есть

Особые виды степенных средних величин < *Особые виды степенных средних величин < Особые виды степенных средних величин < Особые виды степенных средних величин 

Это правило частично подтвердилось расчетом средней себестоимо­сти продукции, где средняя гармоническая получилась равной 4,1 руб./ед., а средняя арифметическая 4,3 руб./ед. Если рассчитать еще и среднюю геометрическую взвешенную, то она будет равной 4,2 руб./ед.