Средние отклонения от средних величин

Поможем написать любую работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Каждая статистическая величина от среднего значения отличается (отклоняется) по-разному и в любую сторону: со знаком плюс или ми­нус. Поэтому для оценки типичности полученной средней величины надо знать величину среднего отклонения совокупности от нее. По­скольку неизбежны и отрицательные отдельные отклонения, необходи­ма нейтрализация знака минус, иначе среднего отклонения не получит­ся. Этого можно достичь двумя способами: принять отрицательные от­клонения по модулю или возвести их во вторую степень (в квадрат).

При первом способе образуется среднее линейное отклонение, а при втором — среднее квадратическое. В связи с тем, что средние величины могут быть простыми и взвешенными, аналогичными могут быть и средние отклонения. Поэтому среднее линейное отклонение определяет­ся по формулам

Средние отклонения от средних величинСредние отклонения от средних величин       – простое;                                                     (1.22)

Средние отклонения от средних величинвзвешенное.     (1.23)

В этих формулах прямые скобки означают, что разности или откло­нения берутся по модулю, то есть без учета знака. Если ошибочно вме­сто прямых скобок принять обычные круглые, то получится Л=0.

При использовании второго способа вначале определяется дисперсия отклонений по формулам

Средние отклонения от средних величин       – простая;                                                     (1.24)

Средние отклонения от средних величинСредние отклонения от средних величин     – взвешенная.           (1.25)

Дисперсия альтернативного признака (т.е. имеющего две взаимоисключающие разновидности, например, пол человека – мужской или женский, качество продукции – годная или бракованная) определяется по формуле 1.25, если вместо Xi подставить 1 и 0 (так как признак может принимать только 2 значения). Зная, что:

p + q = 1,

где p – доля единиц, обладающих признаком, q – доля единиц не обладающих им.

Среднее значение можно найти по формуле (1.14):

Средние отклонения от средних величин.

Таким образом получим формулу дисперсии альтернативного признака, применив формулу (1.25):

Средние отклонения от средних величин.

Таким образом, дисперсия альтернативного признака равна

Средние отклонения от средних величин.                                                             (1.26)

Предельное значение дисперсии альтернативного признака равно 0,25; оно получается при p = q = 0,5.

В отличие от математики статистика оперирует не абстрактными, а смысловыми величинами, имеющими размерность. Поэтому и диспер­сия здесь не безразмерная, как в математике, а сопровождается квадратической размерностью. Например, если статистическая величина измеряется в годах, или рублях, то дисперсия отклонений получится в «квадратных» годах или в «квадратных» рублях.

Для получения обычной размерности находится среднее квадратическое отклонение («сигма»)  как корень квадратный из дисперсии. То есть

Средние отклонения от средних величин= Средние отклонения от средних величин.                                                                   (1.27)

Однако значения средних отклонений, как любой абсолютной вели­чины, служат лишь количественной мерой анализа статистической со­вокупности. Для качественного анализа применяются относительные критерии, называемые коэффициентами вариации.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.