Определение ошибки выборочной средней и необходимой численности выборки.

Доказано - для экономистов работа с числами очень важный навык. Игоровой тренажер "Продолжи ряд" создан специально для работы с числами в уме. В начале обучения только 2 из 10 проходят тест без ошибок.

Пройти тест

При случайном повторном отборе средняя ошибка выборочной средней рассчитывается по формуле:

,

*        

где  — средняя ошибка выборочной средней;

— дисперсия выборочной совокупности;

n — численность выборки.

 

При бесповторном отборе она рассчитывается по формуле:

,

где N — численность генеральной совокупности.

При повторном отборе средняя ошибка выборочной доли рассчитывается по формуле:

,

 

где  — выборочная  доля единиц, обладающих изучаемым признаком;

 — число единиц, обладающих изучаемым признаком;

 — численность выборки.

При бесповторном способе отбора средняя ошибка выборочной доли определяется по формулам:

Предельная ошибка выборки  связана со средней ошибкой выборки  отношением:

.

При этом t как коэффициент доверия (кратности) средней ошибки выборки зависит от значения вероятности Р, с которой гарантируется величина предельной ошибки выборки.

Разрабатывая программу выборочного наблюдения, сразу задают величину допустимой ошибки выборки и доверительную вероятность. Неизвестным остается тот минимальный объем выборки, который должен обеспечить требуемую точность.

Метод отбора

Для средней

Для доли

Повторный

Бесповторный

 

Значения ∆ и t определяются как задачами, стоящими перед исследователем, так и природой изучаемого явления. Чем более достоверные результаты требуется получить, тем большую вероятность необходимо задать. С увеличением допустимой ошибки уменьшается необходимый объем выборки, и наоборот (т. е., например, увеличение ошибки выборки в 2 раза уменьшит n в 4 раза).

Вариация (σ2) признака существует объективно, независимо от исследователя, но к началу выборочного наблюдения она неизвестна. Приближенно σ2 определяют следующими способами:

1) берут из предыдущих исследований;

2) по правилу «трех сигм» общий размах вариации укладывается в 6 сигм (R≈6 σ, отсюда σ = R/6). Для большей точности R делят на 5;

3) если хотя бы приблизительно известна средняя величина изучаемого признака, то σ ≈ х /3;

4) при изучении альтернативного признака, если нет даже приблизительных сведений о доле единиц, обладающих заданным значением этого признака, берется максимально возможная величина дисперсии, равная 0,25.