СТАТИСТИЧЕСКИЕ ИНДЕКСЫ

Доказано - для экономистов работа с числами очень важный навык. Игоровой тренажер "Продолжи ряд" создан специально для работы с числами в уме. В начале обучения только 2 из 10 проходят тест без ошибок.

Пройти тест

Само слово «индекс» (index) означает показатель. Обычно этот термин используется для некоторой обобщающей характеристики изменений. Например, индекс Доу Джонса, индекс деловой активности, индекс объема промышленного производства и т.д. Гораздо реже термин «индекс» используется как обобщенный показатель состояния, например, известный индекс интеллектуального развития IQ.

В практике статистики индексы, наряду со средними величинами, являются наиболее распространенными статистическими показателями. Но индексы имеют три принципиальных отличия.

Во-первых, индексы позволяют измерить изменение сложных явлений (неоднородных статистических совокупностей). Например, нужно определить, как изменились за год расходы жителей г. Луганска на городской транспорт. Для ответа на этот вопрос необходимо знать численность пассажиров, перевезенных за год каждым видом транспорта, рассчитать среднемесячную численность пассажиров или взять точные данные из отчетов по месяцам, умножить численность на тариф перевозки (и число месяцев его действия – в случае использования среднемесячной численности) и полученные величины просуммировать. То же нужно сделать по данным за прошлый год. Затем сопоставить сумму расходов за последний год с суммой за прошлый год. То есть это не просто средние двух чисел, как при расчете, например, темпов динамики или приростов, а получение и сравнение некоторых агрегатированных величин.

Во-вторых, индексы позволяют проанализировать изменения – выявить роль отдельных факторов. Например, можно определить, как изменилась сумма выручки городского транспорта за счет изменения численности пассажиров, изменения тарифов, наконец, за счет соотношения в объеме перевозок разными видами транспорта.

В-третьих, индексы являются показателями сравнений не только с прошлым периодом (сравнение во времени), но и с другой территорией (сравнение в пространстве), а также с нормативами. Например, интересно знать, не только как изменилось среднедушевое потребление мяса в Украине в данном году по сравнению с прошлым годом (или с каким-либо другим периодом), но и сравнить показатели среднедушевого потребления мяса в Украине и в развитых странах Запада, Востока. А также провести сравнение с нормативной величиной, отвечающей нормам рационального питания. Очевидно, что каждое направление сравнения вносит что-то новое.

Существует множество определений индекса.

Индекс – это показатель сравнений двух состояний одного и того же социально-экономического явления и представляет собой относительную величину, получаемую в результате сопоставления уровней сложных явлений во времени, в пространстве или с планом.

Индекс – это показатель, который сочетает в себе качества средних и относительных величин одновременно Обычно их применяют для характеристики сложных совокупностей единиц наблюдения, то есть состоящих из разнородных элементов, непосредственное суммирование которых невозможно в силу их несоизмеримости. Например, в магазине ассортимент товаров состоит из разновидностей, первичный учет которых ведется в натуральных единицах измерения: молоко – в литрах, мясо – в килограммах, консервы – в банках, торты – в штуках, макароны – в пачках и т.д. Для определения общего объема реализации продуктов суммировать данные разнородные товары в натуральных единицах их учета, просто, нельзя, так как результат будет бессмысленным. Для получения обобщающих показателей в сложных статистических совокупностях необходимо применять индексный метод.

Индексный метод представляет собой совокупность приемов, которая исторически возникла для измерения динамики социально-экономических явлений. Это сравнительно молодой метод в статистике. В простейшей форме его стали применять более 100 лет тому назад, но по-настоящему этот метод начал развиваться значительно позднее, когда появились большие теоретические работы и практические исследования в этой области.

Основой индексного метода при определении изменений в производстве и обращении товаров является переход от натурально-вещественной формы выражения товарных масс к стоимостным (денежным) измерителям. Именно посредством денежного выражения стоимости отдельных товаров устраняется их несравнимость как потребительских стоимостей и достигается единство.

В зависимости от степени охвата и характера подвергнутых обобщению единиц изучаемой совокупности все индексы, употребляемые в статистике, делятся на два класса: индивидуальные (элементарные) и общие (сложные).

Индивидуальные индексы – это относительные числа, характеризующие изменения во времени показателей, относящихся к однородному объекту (к одной статистической совокупности), или изменения во времени показатели одновременно существующих однородных объектов (изменения уровней однотипных явлений). Индивидуальные индексы вычисляются просто. Если, например, требуется показать динамику цены или производительности труда, урожайности пшеницы или любой другой культуры с помощью индивидуальных индексов, то берут величину текущего периода и делят ее на величину сравниваемого периода.

Общие индексы выражают сводные (обобщающие) результаты совместного изменения всех единиц сложной статистической совокупности или изменение сложных общественных явлений во времени.

Рис. 13.1. Классификация статистических индексов

Общие индексы подразделяются на индексы объемных и качественных показателей.

К объемным показателям относятся:

-         физический объем продукции (обозначается буквой ). Выражается в натуральных единицах объема: кг, литры, метры, мешки, банки, ящики;

-         объем продукции или услуг (товарооборот), выраженный в стоимостной форме (обозначается буквами ). Выражается в денежной форме: грн., доллар.

К качественным показателям относятся:

-         цена продукции или услуг (обозначается буквой ). Выражается в денежной форме: грн., доллар;

-         себестоимость продукции или услуг (обозначается буквой ). Выражается в денежной форме: грн., доллар;

-         затраты на производство продукции (обозначается буквами ). Выражается в денежной форме: грн., доллар.

При вычислении индексов различают сравниваемый уровень (отчетный период), и уровень, с которым производится сравнение, называемый базисным. Если показатель относится к сравниваемому (отчетному) уровню, то индексируемой величине присваивается символ «1» (например,  – цена товара за отчетный период), а если показатель относится к базисному периоду, то индексируемой величине присваивается символ «0» (например, - объем продукции за базисный период).

Выбор базы сравнения определяется целью исследований. В индексах, характеризующих изменение индексируемой величины во времени, за базисную величину принимают размер показателя в каком-либо периоде, предшествующем отношению. При этом возможны два способа расчета индексов – цепной и базисный.

Цепные индексы получают сопоставлением текущих уровней с предшествующим, т.е. база сравнения непрерывно меняется.

Базисные индексы получают сопоставлением текущих уровней с уровнем периода, принятого за базу сравнения, т.е. база сравнения остается неизменной.

При использовании индексов как показателей выполнения плана, за базу сравнения принимаются плановые показатели.

В статистике индивидуальные индексы принято обозначать буквой «», а общие индексы – буквой «».

Рассмотрим порядок вычисления индивидуальных индексов. Как уже отмечалось, индивидуальные индексы определяются как отношение уровня исследуемого показателя за отчетный период к уровню того же показателя за базисный период. При этом основным элементом индексного отношения является индексируемая величина, под которой понимается значение показателя за отчетный период. Ее всегда записывают в числителе индексного отношения.

Индивидуальные индексы объема реализации или производства товаров определяют по формуле:

                                                                        (13.1)

где        – индивидуальный индекс объема продукции;

 – объем продукции в текущем (отчетном) периоде;

 – объем продукции в базисном периоде.

Индивидуальные индексы цены продукции или услуг определяются по формуле:

                                                           (13.2)

где        – индивидуальный индекс цены продукции;

 и – цена продукции в текущем (отчетном) и базисном периодах;

Индивидуальный индекс себестоимости продукции определяется по формуле:

                                                             (13.3)

где        – индивидуальный индекс себестоимости продукции;

 и – себестоимость продукции в текущем (отчетном) и базисном периодах;

Пример. Пусть предприятие во II квартале 2000 года изготовило 100 утюгов, которые реализовало по цене 60 грн. за 1 шт. При этом себестоимость изготовления утюгов равнялась 40 грн. за 1 шт. Во II квартале 2001 года это предприятие изготовило только 90 утюгов и реализовало их по цене 70 грн. за 1 шт. При этом себестоимость производства утюгов достигла 45 грн. за 1 шт.

Вычислим индивидуальные индексы объема, цены и себестоимости производства утюгов.

;;

На данном предприятии во II квартале 2001 г. по сравнению с тем же периодом 2000 г:

объем производства снизился на;

но при этом возросла цена продукции на ;

а себестоимость – возросла на .

Индивидуальные индексы для статистических исследований вычисляются крайне редко, так однородных совокупностей практически не бывает.

Основной формой общих индексов являются агрегатные индексы («aggrega» (лат.) – присоединять). В числители и знаменателе общих индексов в агрегатной форме содержатся соединенные наборы (агрегаты) элементов изучаемых сложных статистических совокупностей.

Для достижения сопоставимости разнородных единиц в сложных статистических совокупностях в индексные соотношения вводят специальные сомножители – так называемые, соизмерители. Они необходимы для перехода от натуральных измерений разнородных единиц к однородным показателям. При этом в числителе и знаменателе общего индекса изменяются лишь значения индексируемой величины, а их соизмерители остаются постоянными величинами и фиксируются на одном уровне (текущего или базисного периода). Это необходимо для того, чтобы на величине индекса называлось лишь влияние фактора, который определяет изменения индексируемой величины.

Общий индекс цены.

                                                                         (13.4)

Цена является качественным показателем, поэтому соизмерителем берем количественный показатель физического объема () и обозначение его периода берем по числителю обозначения периода вычисления цены () (отношение цены в отчетном периоде  к базисному ).

Общий индекс физического объема.

                                                                    (13.5)

Физический объем является количественным показателем, поэтому соизмерителем берем качественный показатель цены () и его период берем по знаменателю обозначения периода вычисления физического объема () (отношение физического объема в отчетном периоде  к базисному )

Общий индекс себестоимости..

                                                                     (13.6)

Себестоимость является качественным показателем, поэтому соизмерителем берем количественный показатель физического объема () и обозначение его периода берем по числителю обозначения периода вычисления себестоимости () (отношение себестоимости в отчетном периоде  к базисному )

Общий индекс товарооборота.

                                                              (13.7)

Общий индекс затрат на производство.

                                                              (13.8)

Рассмотрим индексный метод изучения динамики сложных статистических совокупностей на примерах.

Пример. Пусть имеются сведения о ценах и реализации товаров за два периода. Эти данные приведены в табл. 13.1.

Как видно из табл. 13.1, совокупность товаров разнородная (единицы измерения). Определим агрегатный индекс цен.

,

т.е. цены возросли в целом на 13,9%. В данном примере цена – индексируемый показатель, а объем - вес, взятый за отчетный период.

Таблица 13.1

Реализация товаров

Товар

Единица измерения

I период (базисный)

II период (отчетный)

Индивидуальные индексы

Цена за единицу товара, грн., ()

Количество товара, ()

Цена за единицу товара, грн., ()

Количество товара, ()

Цены,

Физического объема,

А

т

20

7500

25

9500

1,25

1,27

Б

м

30

2000

30

2500

1,0

1,25

В

шт

15

1000

10

1500

0,67

1,5

Можно в качестве весов взять объем и за базисный период. Тогда агрегатный индекс цен будет иметь вид:

,

т.е. цены возросли на 14,4 % (114,4-100 = 14,4%).

Используя два варианта расчета, получаем разное значение индекса цен. Какой из них ближе к реальному и принимать за действительный зависит от цели исследований.

Общее правило построения общих индексов.

-         в исходные данные вводят необходимые буквенные обозначения;

-         записывают формулу общего индекса;

-         числитель и знаменатель формулы общего индекса расписывают в табличном виде;

-         производят промежуточные расчеты;

-         результаты вычислений подставляют в формулу общего индекса;

-         вычисляют общий индекс и делают выводы.

Для того чтобы по двум известным индексам определить третий неизвестный, в статистике используется взаимосвязь между общими индексами. Индекс реализации продукции (товарооборота) равен произведению общего индекса физического объема на общий индекс цен, а индекс затрат на производство продукции равен произведению общего индекса себестоимости продукции на общий индекс физического объема.

                                                            (13.9)

                                                                        (13.10)

При анализе хозяйственной деятельности предприятий и организаций использование общих индексов в ряде случаев затруднено из-за отсутствия отдельных отчетных данных, особенно при вычислении планируемых показателей. Поэтому на практике часто используют формулы расчета общих индексов как величин, средних из соответствующих индивидуальных индексов. В этом смысле общий индекс изучаемого явления рассматривается как результат изменения уровня данного явления у отдельных единиц совокупности. В процессе осреднения индивидуальных индексов веса подбираются такими, чтобы был возможен алгебраический переход от общего индекса в форме средней величины к общему индексу в агрегатной форме. И наоборот, агрегатная форма общего индекса позволяет выбрать взвешивающий показатель при расчете общего индекса в виде средней величины.

Средневзвешенный индекс – это средний из индивидуальных индексов, взвешенных на объемы, имеющие одинаковую размерность и зафиксировнные на неизменном уровне.

Средневзвешенный индекс физического объема получают, если преобразования делаются в числителе общего индекса, т.е. в среднеарифметической форме, через соответствующий индивидуальный индекс. При этом условный товарооборот , т.к. .

                                               (13.11)

Средневзвешенный индекс цен получают, если преобразования делаются в знаменателе общего индекса, т.е. в среднегармонической форме.

                                                      (13.12)

При этом условный товарооборот  вычисляется через индивидуальный индекс цен , откуда , а

При изучении коммерческой деятельности предприятий приходится осуществлять индексные сопоставления более чем за два периода. Поэтому индексные величины могут вычисляться как с постоянной, так и с переменной базами сравнения. При этом, если задача анализа состоит в получении характеристик изменения изучаемого явления во всех последующих периодах по сравнению с начальным, то вычисляются базисные индексы. Но если требуется охарактеризовать последовательное изменение изучаемого явления из периода в период, то вычисляются цепные индексы.

В зависимости от задачи исследований и характера исходной информации, базисные и цепные индексы исчисляются как индивидуальные (однотоварные), так и общие. Способы расчета индивидуальных базисных и цепных индексов аналогичны расчету относительных величин динамики. Общие индексы, в зависимости от их вида (экономического содержания), вычисляются с переменными и постоянными весами – соизмерителями. Так, рассмотренная выше агрегатная форма общего индекса физического объема вычисляется как индекс с постоянными весами. Агрегатная форма общего индекса цен исчисляется как индекс с переменными весами.

Индивидуальные индексы физического объема.

Базисные

Цепные

;        ;      

;        ;       

Таким же образом можно записать индивидуальные индексы цены и себестоимости.

Общие индексы.

Базисные

Цепные

Физического объема

;;.

;;.

Цены

;;

;;.

Себестоимости

;;

;;

Товарооборота (реализации)

;;

;;

 

Общие индексы физического объема (цепные) в среднеарифметической форме:

;    ;        

 

Общие индексы цены (базисные) в среднегармонической форме:

;                    ;                

Общие индексы цены (цепные) в среднегармонической форме:

;                    ;                

Абсолютное изменение вычисляется как разность между числителем и знаменателем соответствующего индекса. Например, абсолютное изменение товарооборота в целом  раскладывается на две составляющие:

за счет изменения цен

и за счет изменения физического объема товаров

Цепные и базисные индексы с постоянными весами находятся во взаимосвязи:

1. Произведение цепных индексов дает базисный индекс последнего периода:

2. Деление последующего базисного индекса на предыдущий базисный индекс дает цепной индекс последующего периода. В индексах с переменными весами такой зависимости нет.

 


Прогноз – это результат научной деятельности, направленной на выявление возможных состояний объектов в будущем, а также альтернативных путей и сроков достижения этого состояния. Прогнозирование – процесс разработки обоснованных прогнозов.

При стохастической связи причинная зависимость между факторными и результативными признаками проявляется не в каждом отдельном случае, а лишь при большом числе наблюдений, т.е. с изменением одной величины меняется распределение другой.

Индекс Доу-Джонса - средний показатель курсов акций группы крупнейших компаний США. Индекс публикуется фирмой "Dow Jones & Company" и представляет среднеарифметическое ежедневных котировок на момент закрытия биржи. Различают индексы Доу-Джонса для акций коммунальных, промышленных и транспортных компаний. Индекс Доу-Джонса служит показателем текущей хозяйственной конъюнктуры США и отражает реакцию американских деловых кругов на различные экономические и политические события.