Оценка значимости коэффициентов автокорреляции по t-критерию.

Доказано - для экономистов работа с числами очень важный навык. Игоровой тренажер "Продолжи ряд" создан специально для работы с числами в уме. В начале обучения только 2 из 10 проходят тест без ошибок.

Пройти тест

 

После расчетов необходимо определить на каком лаге коэффициент будет максимальным (как правило, это первый лаг) и оценить его значимость. Предпосылкой для решения данной задачи является возможность проявления ошибки репрезентативности при анализе выборочных данных. Проверяется статистическая гипотеза: генеральный коэффициент автокорреляции равен нулю (следовательно, полученное значение выборочного коэффициента автокорреляции является следствием проявление случайной ошибки репрезентативности). Альтернативная гипотеза: генеральный коэффициент автокорреляции отличен от нуля (следовательно, полученное значение выборочного коэффициента автокорреляции может рассматриваться как оценка неизвестного генерального коэффициента автокорреляции по выборочным данным). Гипотезы проверяются через расчет t-критерия Стьюдента и сравнение расчетного значения с теоретическим.

 

   где r – коэффициент автокорреляции, σr – стандартная ошибка коэффициента автокорреляции.

Ошибка рассчитывается следующим образом:

 

 где n – число уровней ряда

 

 

Теоретическое значение критерия Стьюдента при уровне значимости 0,05 и числе степеней свобод 12 равно 2,17

 

 

 

Расчетное значение критерия превосходит теоретическое (16,69 против 2,17), следовательно коэффициент автокорреляции на первом лаге признается значимым.

Наличие высокой автокорреляции в сочетании со значимостью коэффициента дает нам возможность рассмотреть регрессионную модель вида

 

 (один из видов модели регрессии). Такая модель называется авторегрессией и позволяет решать задачу экстраполяции и прогнозирования.

 

Практика показывает, что часто в отклонениях от тренда сохраняется автокорреляция. Прежде чем приступить к расчету коэффициента корреляции по остаткам, необходимо проверить наличие в них автокорреляции. Проверяемая статистическая гипотеза (H0:) формулируется следующим образом:

H0: автокорреляция в анализируемом динамическом ряду отсутствует.

Наиболее распространенным статистическим критерием оценки автокорреляции в отклонениях от тренда, является  критерий Дарбина – Уотсона (d0),  статистика критерия определяется по следующей формуле:

 

                           ,                                

где  – случайные отклонения от тренда .

Значение критерия изменяется в интервале от «0» до «4». При   0 < d < 2 - автокорреляция положительная,

если 2 < d < 4 – автокорреляция отрицательная.

Близость величины критерия к «2» говорит об отсутствии или несущественной автокорреляции. Оценки, получаемые по критерию «d», являются интервальными. Существуют таблицы распределения значений критерия Дарбина – Уотсона, составленные для различных уровней значимости. Таблицы составлены с учетом числа наблюдений в динамическом ряду и числа переменных в уравнении тренда.

По таблице в каждом конкретном случае находят нижнюю () и верхнюю () границы критерия. Результат сравнения расчетного значения с табличным интерпретируется следующим образом:

1.    >  ,  - H0   -  принимается;

2.    <  ,    - H0   -  отвергается;

3. , необходимо дальнейшее исследование (например, по более протяженному временному ряду).

Для проверки остатков на наличие автокорреляции можно просто рассчитать коэффициенты автокорреляции по остаткам. Данная задача решается аналогично задаче оценки автокорреляции динамических рядов. Единственное отличие: исходные данные в этом случае – это остатки по оптимальному тренду (берутся из отчетов)

 

 

 

 

 

 

 

Отсутствие автокорреляции в остатках определяется по величине коэффициента (меньше 0,5 – автокорреляция отсутствует). Решение данной задачи дополнительно подтверждает качество выбора тренда.

Кросс-корреляция динамических рядов – это корреляционная зависимость между динамическими рядами с заданным временным смещением (лагом). Внимание! Расчет коэффициентов кросс-корреляции проводится по остаткам с оптимальных трендов по динамическим рядам. Необходимость исключения трендовой составляющей динамического ряда объясняется тем, что при коррелировании уровней однонаправленных рядов значительно искажаются (завышаются результаты расчетов).    

 

Остатки по двум динамическим рядам берутся из отчетов по оптимальным трендам.

Смещение (лаг) задается по аналогии с задачей автокорреляции.

Вторым отличием является необходимость рассмотрения прямой и обратной зависимости.

Последовательность задания исходных данных значения в данном случае не имеет, так как в любом случае рассматривается прямая зависимость – импорт к экспорту, и обратная – экспорт к импорту соответственно.

Третье отличие - на нулевом лаге смещение не задается

 

По полученным коэффициентам кросс-корреляции строится коррелограмма

По аналогии с решением задачи автокорреляции необходимо оценить значимость максимального коэффициента кросс-корреляции (как правило, это коэффициент на нулевом лаге).

Наличие высокой кросс-корреляции в сочетании со значимостью коэффициента дает нам возможность рассмотреть регрессионную модель вида

 

 (в качестве модели регрессии выбирается оптимальный тренд. В данном случае линейный). Такая модель называется регрессионной моделью с включением фактора времени) и позволяет решать задачу экстраполяции и прогнозирования.

- уровни второго динамического ряда с заданным смещением на величину лага

В нашем случае .