Экстраполяция тренда и доверительные интервалы прогноза

Доказано - для экономистов работа с числами очень важный навык. Игоровой тренажер "Продолжи ряд" создан специально для работы с числами в уме. В начале обучения только 2 из 10 проходят тест без ошибок.

Пройти тест

Если при анализе развития объекта прогноза есть основания принять два базовых допущения экстраполяции, о которых мы говорили выше, то процесс экстраполяции заключается в подстановке соответствующей величины периода упреждения в формулу, описывающую тренд.

Экстраполяция, вообще говоря, дает точечную прогностическую оценку. Интуитивно ощущается недостаточность такой оценки и необходимость получения интервальной оценки с тем, чтобы прогноз, охватывая некоторый интервал значений прогнозируемой переменной, был бы более надежным. Как уже сказано выше, точное совпадение фактических данных и прогностических точечных оценок, полученных путем экстраполяции кривых, характеризующих тенденцию, — явление маловероятное. Соответствующая погрешность имеет следующие источники:

1) выбор формы кривой, характеризующей тренд, содержит элемент субъективизма. Во всяком случае часто нет твердой основы для того, чтобы утверждать, что выбранная форма кривой является единственно возможной или тем более наилучшей для экстраполяции в данных конкретных условиях;

2) оценивание параметров кривых (иначе говоря, оценивание тренда) производится на основе ограниченной совокупности наблюдений, каждое из которых содержит случайную компоненту. В силу этого параметрам кривой, а следовательно, и ее положению в пространстве свойственна некоторая неопределенность;

3) тренд характеризует некоторый средний уровень ряда на каждый момент времени. Отдельные наблюдения, как правило, отклонялись от него в прошлом. Естественно ожидать, что подобного рода отклонения будут происходить и в будущем.

Погрешность, связанная со вторым и третьим ее источником, может быть отражена в виде доверительного интервала прогноза при принятии некоторых допущений о свойстве ряда. С помощью такого интервала точечный экстраполяционный прогноз преобразуется в интервальный.

Вполне возможны случаи, когда форма кривой, описывающей тенденцию, выбрана неправильно или когда тенденция развития в будущем может существенно измениться и не следовать тому типу кривой, который был принят при выравнивании. В последнем случае основное допущение экстраполяции не соответствует фактическому положению вещей. Найденная кривая лишь выравнивает динамический ряд и характеризует тенденцию только в пределах периода, охваченного наблюдением. Экстраполяция такого тренда неизбежно приведет к ошибочному результату, причем ошибку такого рода нельзя оценить заранее. В связи с этим можно лишь отметить то, что, по-видимому, следует ожидать рост такой погрешности (или вероятности ее возникновения) при увеличении периода упреждения прогноза.

Одна из основных задач, возникающих при экстраполяции тренда, заключается в определении доверительных интервалов прогноза. Интуитивно понятно, что в основу расчета доверительного интервала прогноза должен быть положен измеритель колеблемости ряда наблюдаемых значений признака. Чем выше эта колеблемость, тем менее определенно положение тренда в пространстве “уровень — время” и тем шире должен быть интервал для вариантов прогноза при одной и той же степени доверия. Следовательно, при построении доверительного интервала прогноза следует учесть оценку колеблемости или вариации уровней ряда. Обычно такой оценкой является среднее квадратическое отклонение (стандартное отклонение) фактических наблюдений от расчетных, полученных при выравнивании динамического ряда.

Прежде чем приступить к определению доверительного интервала прогноза, необходимо сделать оговорку о некоторой условности рассматриваемого ниже расчета. То, что следует далее, является в некоторой мере произвольным перенесением результатов, найденных для регрессии выборочных показателей, на анализ динамических рядов. Дело в том, что предположение регрессионного анализа о нормальности распределения отклонений вокруг линии регрессии не может, по существу, безоговорочно утверждаться при анализе динамических рядов.

Полученные в ходе статистического оценивания параметры не свободны от погрешности, связанной с тем, что объем информации, на основе которой производилось оценивание, ограничен, и в некотором смысле эту информацию можно рассматривать как выборку. Во всяком случае смещение периода наблюдения только на один шаг или добавление, или устранение членов ряда в силу того, что каждый член ряда содержит случайную компоненту, приводит к изменению численных оценок параметров. Отсюда расчетные значения  несут на себе груз неопределенности, связанной с ошибками в значении параметров.

В общем виде доверительный интервал для тренда определяется как

                                             ,                                       

где       ¾ средняя квадратическая ошибка тренда;

             ¾ расчетное значение yt;

             ¾ значение t-статистики Стьюдента.

Если t = i L то уравнение определит значение доверительного интервала для тренда, продленного на L единиц времени.

Доверительный интервал для прогноза, очевидно, должен учитывать не только неопределенность, связанную с положением тренда, но возможность отклонения от этого тренда. В практике встречаются случаи, когда более или менее обоснованно для экстраполяции можно применить несколько типов кривых. При этом рассуждения иногда сводятся к следующему. Поскольку каждая из кривых характеризует один из альтернативных трендов, то очевидно, что пространство между экстраполируемыми трендами и представляет собой некоторую “естественную доверительную область” для прогнозируемой величины. С таким утверждением нельзя согласиться. Прежде всего потому, что каждая из возможных линий тренда отвечает некоторой заранее принятой гипотезе развития. Пространство же между трендами не связано ни с одной из них — через него можно провести неограниченное число трендов. Следует также добавить, что доверительный интервал связан с некоторым уровнем вероятности выхода за его границы. Пространство между трендами не связано ни с каким уровнем вероятности, а зависит от выбора типов кривых. К тому же при достаточно продолжительном периоде упреждения это пространство, как правило, становится настолько значительным, что подобный “доверительный интервал” теряет всякий смысл.

При условии учета стандартных ошибок оценок параметров уравнения тренда (которые по определению являются выборочными, а следовательно, могут не являться оценками неизвестных генеральных параметров из-за проявления случайной ошибки репрезентативности), и не рассматривая последовательность преобразований получим общую формулу доверительного интервала прогноза. 

где  - значение прогноза, рассчитанного по уравнению тренда на период t+L

¾ средняя квадратическая ошибка тренда;

К - коэффициент, учитывающий ошибки коэффициентов уравнения тренда

      ¾ значение t-статистики Стьюдента.

 

Коэффициент К рассчитывается следующим образом

                                                        

n ¾ число наблюдений (длина ряда динамики);

L – число прогнозов

Значение К зависит только от п и L, т. е. продолжительности наблюдения и периода прогнозирования.

Пример расчета прогноза и построения доверительного интервала прогноза.

Оптимальным трендом является линейный тренд . Необходимо рассчитать прогнозы объемов импорта в Германии на 1996 и 1997 год. Для этого необходимо определить значения уровней тренда при значениях временного фактора 14 и 15.

Объем импорта в 1996 г:

Объем импорта в 1997 г:

Стандартная ошибка тренда Sy = 30,727. Коэффициент доверия распределения Стъюдента при уровне значимости 0,05 и числе степеней свобод равен 2,16. Коэффициент К равен 1,428:

Таким образом, нижняя граница первого доверительного интервала равна 378,62: 473,452-30,727*2,16*1,428.

Верхняя граница равна 568,28: 473,452+30,727*2,16*1,428.

Результаты расчетов необходимо оформить в виде таблице и графически

Нижняя граница 95% доверительного интервала

Фактическое значение объема импорта в Германии за 1996 год

Прогнозное значение объема импорта в Германии за 1996 год

Верхняя граница 95% доверительного интервала

378,6211

458,783

473,452

568,2829

Нижняя граница 95% доверительного интервала

Фактическое значение объема импорта в Германии за 1997 год

Прогнозное значение объема импорта в Германии за 1997 год

Верхняя граница 95% доверительного интервала

405,1791

441,742

500,01

594,8409

Данный график рисуется следующим образом:

1)      необходимо сделать копию уже существующего графика сглаживания динамического ряда линейным трендом

2)      дорисовать недостающие значения (фактические уровни ряда за 1996 и 1997 год, прогнозы на 1996 и 1997 год, а также границы доверительных интервалов).

График в какой-то степени условный, так как точный масштаб вряд ли удастся выставить. Рисовать можно как от руки, так и используя инструменты рисования Excel.