Оценка адекватности тренда и прогнозирование

Поможем написать любую работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость

Для найденного уравнения тренда необходимо провести оценку его надежности (адекватности), что осуществляется обычно с помощью критерия Фишера, сравнивая его расчетное значение с теоретическим (табличным) значением (Приложение 4). При этом расчетный критерий Фишера определяется по формуле (102):

,                                                  (102)

где k – число параметров (членов) выбранного уравнения тренда.

Для проверки правильности расчета сумм в формуле (102) можно использовать следующее равенство (103):

.                                           (103)

В нашем примере про ВО равенство (103) соблюдается (необходимые суммы рассчитаны в трех последних столбцах табл. 31): 89410,434 = 9652,171 + 79758,263.

Сравнение расчетного и теоретического значений критерия Фишера ведется при заданном уровне значимости[32] с учетом степеней свободы:  и . При условии Fр > FТ считается, что выбранная математическая модель ряда динамики адекватно отражает обнаруженный в нем тренд.

Проверим тренд на адекватность в нашем примере про ВО по формуле (102):

= 79758,263*5/(9652,171*1) = 41,32 >, значит, модель адекватна и ее можно использовать для прогнозирования (= 6,61 находим по Приложению 4 в 1-ом столбце [= k – 1 = 2 – 1 = 1] и 5-й строке [= n – k = 5]).

Как уже было отмечено ранее, в нашем примере про ВО России можно произвести выравнивание не только по прямой линии, но и по параболе, чего делать не будем, так как уже найденный линейный тренд адекватно описывает тенденцию[33].

При составлении прогнозов уровней социально-экономических явлений обычно оперируют не точечной, а интервальной оценкой, рассчитывая так называемые доверительные интервалы прогноза. Границы интервалов определяются по формуле (104):

,                                                           (104)

где – точечный прогноз, рассчитанный по модели тренда; коэффициент доверия по распределению Стьюдента при уровне значимости  и числе степеней свободы =n–1 (Приложение 2)[34];  – ошибка аппроксимации, определяемая по формуле (105):

.                                                             (105)

Спрогнозируем ВО России на 2007 и 2008 годы с вероятностью 0,95 (значимостью 0,05), для чего найдем ошибку аппроксимации по формуле (105): == 43,937 и найдем коэффициент доверия по распределению Стьюдента по Приложению 2: = 2,4469 при = 7 – 1= 6.

Прогноз на 2007 и 2008 годы с вероятностью 0,95 по формуле (104):

Y2007 = (257,671+53,371*4)2,4469*43,937 или 363,6<Y2007<578,7 (млрд. долл.);

Y2008 = (257,671+53,371*5)2,4469*43,937 или 417,0<Y2008<632,0 (млрд. долл.).

Как видно из полученных прогнозов, доверительный интервал достаточно широк (из-за достаточно большой величины ошибки аппроксимации). Более точный прогноз можно получить при выравнивании по параболе 2-го порядка[35].

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.