Необходимая численность выборки

Поможем написать любую работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость

Разрабатывая программу выборочного наблюдения, задаются конкретным значением предельной ошибки и уровнем вероятности. Не­известной остается минимальная численность выборки, обеспечиваю­щая заданную точность. Ее можно получить из формул средней и пре­дельной ошибок в зависимости от типа выборки. Так, подставляя фор­мулы сначала (65) и затем (66) в формулу (67) и решая ее относи­тельно численности выборки, получим следующие формулы:

для повторной выборки n = ;      (72)         для бесповторной выборки n = .     (73)

Вариация () значений признака к началу выборочного наблюдения как правило неизвестна, поэтому ее берут приближенно одним из способов:

1) берется из предыдущих выборочных наблюдений;

2)      по правилу «трех сигм», согласно которому в размахе вариации укладывается примерно 6 стандартных отклонений  (H/ = 6, отсюда = Н2 /36);

3)      если приблизительно известна средняя величина изучаемого признака, то = 2 /9;

4)      если неизвестна дисперсия доли единиц, обладающих каким-либо значением признака, то используется ее максимально возможная величина = 0,25.

Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.