Необходимая численность выборки

Онлайн школа английского языка нового поколения. Более 7 лет предоставляет обучение английскому языку по Skype (Скайп) и является лидером данного направления! Основные преимущества:

  • Вводный урок бесплатно;
  • Большое число опытных преподавателей (нейтивов и русскоязычных);
  • Курсы НЕ на определенный срок (месяц, полгода, год), а на конкретное количество занятий (5, 10, 20, 50);
  • Более 10 000 довольных клиентов.
  • Стоимость одного занятия с русскоязычным преподавателем - от 600 рублей, с носителем языка - от 1500 рублей

Узнать детали

Разрабатывая программу выборочного наблюдения, задаются конкретным значением предельной ошибки и уровнем вероятности. Не­известной остается минимальная численность выборки, обеспечиваю­щая заданную точность. Ее можно получить из формул средней и пре­дельной ошибок в зависимости от типа выборки. Так, подставляя фор­мулы сначала (65) и затем (66) в формулу (67) и решая ее относи­тельно численности выборки, получим следующие формулы:

для повторной выборки n = ;      (72)         для бесповторной выборки n = .     (73)

Вариация () значений признака к началу выборочного наблюдения как правило неизвестна, поэтому ее берут приближенно одним из способов:

1) берется из предыдущих выборочных наблюдений;

2)      по правилу «трех сигм», согласно которому в размахе вариации укладывается примерно 6 стандартных отклонений  (H/ = 6, отсюда = Н2 /36);

3)      если приблизительно известна средняя величина изучаемого признака, то = 2 /9;

4)      если неизвестна дисперсия доли единиц, обладающих каким-либо значением признака, то используется ее максимально возможная величина = 0,25.