Проверка соответствия ряда распределения закону Пуассона

Поможем написать любую работу на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость

Таможенная инспекция провела проверку после выпуска товаров. В результате получен следующий дискретный ряд распределения числа нарушений, выявленных в каждой проверке (табл. 16).

Таблица 16. Ряд распределения числа нарушений, выявленных таможенной инспекцией

Число нарушений

0

1

2

3

Число проверок

24

4

2

1

Проведем анализ этого ряда распределения. Сначала рассчитаем среднее число нарушений в выборке, а также его дисперсию, для чего построим вспомогательную таблицу 17.

Таблица 17. Ряд распределения числа нарушений, выявленных таможенной инспекцией

Число

нарушений

X

Число

проверок

f

Xf

(Х -)2 f

m

f’

m’

|f’– m’|

0

24

0

3,022

21,7

0,244

24

21,7

2,3

1

4

4

1,665

7,7

1,778

28

29,4

1,4

2

2

4

5,413

1,4

0,257

30

30,8

0,8

3

1

3

6,997

0,2

3,200

31

31

0

Итого

31

11

17,097

31

5,479

Среднее число нарушений в выборке по формуле (11): = 11/31 = 0,355 (нарушений).

Дисперсию определим по формуле (28):  = = 0,552 (нарушений2).

            Построив график этого распределения (полигон) – рис. 11, видно, что данное распределение не похоже на нормальное.

Рис. 11. Кривая распределения числа нарушений, выявленных таможенной инспекцией

Из структурных характеристик ряда распределения можно определить только моду: Мо = 0, так как по данным табл. 17 такое число нарушений чаще всего встречается (f=24).

По формуле (24) определим размах вариации: H = 3 – 0 = 3, что характеризует вариацию в 3 нарушения.

            По формуле (26) найдем среднее линейное отклонение:

.

Это означает, что в среднем число нарушений отклоняется от среднего их числа на 0,55.

            Среднее квадратическое отклонение рассчитаем не по формуле (28), а как корень из дисперсии, которая уже была рассчитана нами выше: , тогда , т.е. в изучаемом распределении наблюдается некоторое число выделяющихся нарушений (с большим числом нарушений, выявленных в одной проверке).

            Поскольку квартили на предыдущем этапе не определялись, на данном этапе расчет среднего квартильного расстояния пропускаем.

            Теперь рассчитаем  относительные показатели вариации:

–        относительный размах вариации по формуле (32): = 3/0,355 = 8,45;

–        линейный коэффициент вариации по формуле (33): = 0,550/0,355 = 1,55;

–        квадратический коэффициент вариации по формуле (34): = 0,743/0,355 = 2,09.

Все расчеты на данном этапе свидетельствуют о значительных размере и интенсивности вариации нарушений, выявленных таможенной инспекцией.

            Не имеет практического смысла расчет моментов распределения, так как видно из рис. 11, что в изучаемом распределении симметрия отсутствует вовсе, поэтому и расчет эксцесса также бесполезен.

            Выдвинем гипотезу о соответствии изучаемого распределения распределению Пуассона[26], которое описывается формулой (48):

,                                                               (48)

где      P(X)                     – вероятность того, что признак примет то или иное значение X;

            e = 2,7182       – основание натурального логарифма;

            X!                    – факториал числа X (т.е. произведение всех целых чисел от 1 до X включительно);

            a =             – средняя арифметическая ряда распределения.

Из формулы (48) видно, что единственным параметром распределения Пуассона является средняя арифметическая величина. Порядок определения теоретических частот этого распределения следующий:

1)     рассчитать среднюю арифметическую ряда, т.е. = a;

2)     рассчитать ea;

3)     для каждого значения X рассчитать теоретическую частоту по формуле (49):

.                                             (49)

Поскольку a == 0,355 найдем значение e – 0,355 =0,7012. Затем, подставив в формулу (49) значения X от 0 до 3, вычислим теоретические частоты:

m0 =  (т.к. 0! = 1);                     m1 = ;

m2 = ;                                            m3 = .

Полученные теоретические частоты занесем в 5-й столбец табл. 17 и построим график эмпирического и теоретического распределений (рис. 12), из которого видна близость эмпирического и теоретического распределений.

Рис. 12. Эмпирическая и теоретическая (распределение Пуассона) кривые распределения

            Проверим выдвинутую гипотезу о соответствии изучаемого распределения закону Пуассона с помощью критериев согласия.

            Рассчитаем значение критерия Пирсона χ2 по формуле (44) в 6-м столбце табл. 17: χ2 =5,479, что меньше табличного (Приложение 3) значения χ2табл=5,9915 при уровне значимости α = 0,05 и числе степеней свободы ν=4–1–1=2, значит с вероятностью 0,95 можно говорить, что в основе эмпирического распределения лежит закон распределения Пуассона, т.е. выдвинутая гипотеза не отвергается, а расхождения объясняются случайными факторами.

            Определим значение критерия Романовского по формуле (46):

= 1,74 < 3, что подтверждает несущественность расхождений между эмпирическими и теоретическими частотами.

            Для расчета критерия Колмогорова в последних трех столбцах таблицы 17 приведены расчеты накопленных частот и разностей между ними, откуда видно, что в 1-ой группе наблюдается максимальное расхождение (разность) D = 2,3. Тогда по формуле (47): . По таблице Приложения 6 находим значение вероятности при λ = 0,4: P = 0,9972 (наиболее близкое значение к 0,413), т.е. с вероятностью, близкой к единице, можно говорить, что в основе эмпирического распределения величины нарушений, выявленных таможенной инспекцией, лежит закон распределения Пуассона, а расхождения эмпирического и теоретического распределений носят случайный характер.


Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.