Свойства средней арифметической и дисперсии
Поможем написать любую работу на аналогичную тему
В статистических расчетах эти характеристики статистической совокупности зачастую применяются во взаимодействии. При этом с целью приведения их к удобному для анализа виду при громоздких значениях статистических величин используют следующие свойства.
1. Если каждую статистическую величину изменить на одно число (прибавить или отнять), то средняя арифметическая изменится на это число, а дисперсия при этом не изменится.
2. Если каждую статистическую величину изменить в одинаковое число раз (умножить или разделить), то средняя арифметическая изменится во столько же раз, а дисперсия изменится в квадрат таких раз.
Доказать эти свойства можно путем математических преобразований соответствующих формул, но гораздо проще доказательство получается с помощью следующего численного примера.
Принимая предыдущие три статистические величины с их значениями 2, 4, и 6, сначала прибавим к каждой из них 5, а потом умножим каждую из них на 5. Тогда получим измененные значения статистических величин, представленные матрицей
X1=2; X1’=2+5=7; X1’’=2*5=10.
X2=4; X2’=4+5=9; X2’’=4*5=10.
X3=6; X3’=6+5=11; X3’’=6*5=30.
= 4;
’=9;
’’=20.
Д=2,67; Д’=2,67; Д’’=66,67.
В этой матрице значения средних арифметических очевидны, а первоначальное значение дисперсии было найдено в предыдущем примере. Расчет других ее значений приведен ниже по логической формуле (1.24)
Д’= ((7-9)2 + (9-9)2 + (11-9)2)/3 = 2,67
Д’’= ((10-20)2 + (20-20)2 + (30-20)2)/3 = 66,67
Отмечаем, что отношение 66,67/2,67 дает ровно 25 или 52. То есть при увеличении каждой статистической величины в 5 раз дисперсия увеличилась в 25 раз. Аналогичные численные доказательства можно выполнить и в случаях противоположного изменения статистических величин.